This is identical to SurrogateMinimalDepth(), except it requires s to be 0.
Arguments
- RFS
A
RandomForestSurrogates()object withsequal to 0.
Value
A MinimalDepth S3 list object:
RFS: The originalRandomForestSurrogates()object.selected: A character vector of the selected variable names.depth: A numeric vector of the surrogate minimal depth for each variable.threshold: The depth threshold used to select variables.surrogates:average: Total average number of surrogate variables.layer: Average number of surrogate variables by layer (Named numeric of length 1000).
References
Ishwaran, H. et al. (2011) Random survival forests for high-dimensional data. Stat Anal Data Min, 4, 115–132. https://onlinelibrary.wiley.com/doi/abs/10.1002/sam.10103
Ishwaran, H. et al. (2010) High-Dimensional Variable Selection for Survival Data. J. Am. Stat. Assoc., 105, 205–217. http://www.ccs.miami.edu/~hishwaran/papers/IKGML.JASA.2010.pdf
Examples
# \donttest{
data("SMD_example_data")
res.md <- MinimalDepth(RandomForestSurrogates(
x = SMD_example_data[, -1],
y = SMD_example_data[, 1],
num.trees = 10,
s = 0,
num.threads = 1
))
#> Warning: `seed` was not set. Your results may not be reproducible.
# }